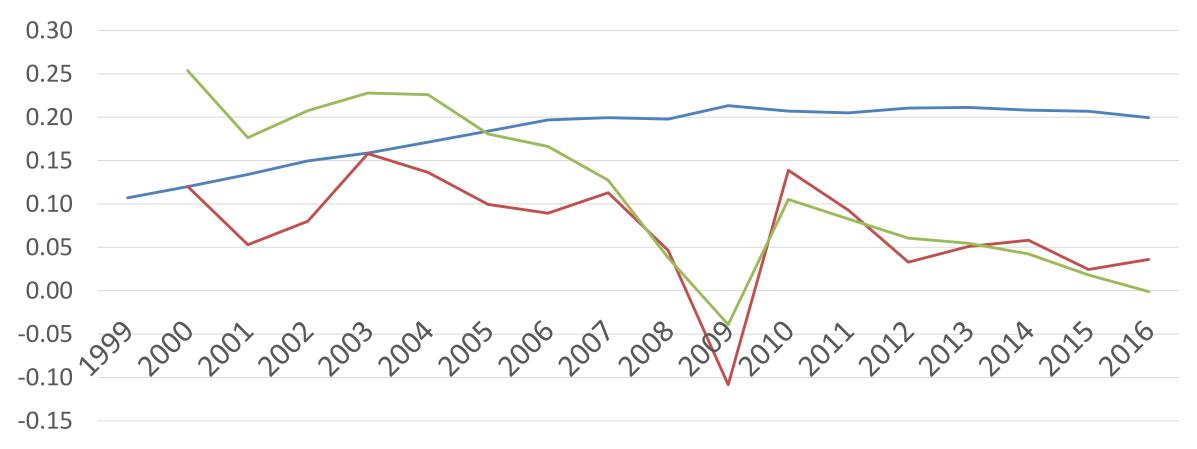


ASSESSING THE IMPORTANCE OF ASIAN PORTS BY APPLYING SOCIAL NETWORK ANALYSIS

Nikola KUTIN – LEMNA, University of Nantes (France) and National University of Management Marie-Sabine SAGET - LEMNA, University of Nantes, France Thomas VALLÉE – LEMNA, University of Nantes, France

> Environmental Maritime Research (EMR) Workshop Day 2: Doctoral Schools in Cambodia

October 19, 2017 Royal University of Agriculture


1. Introduction

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

- —Part of China from the Total Containerized Trade
- -World Seaborne Container Trade
- -China Seaborn Container Trade

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

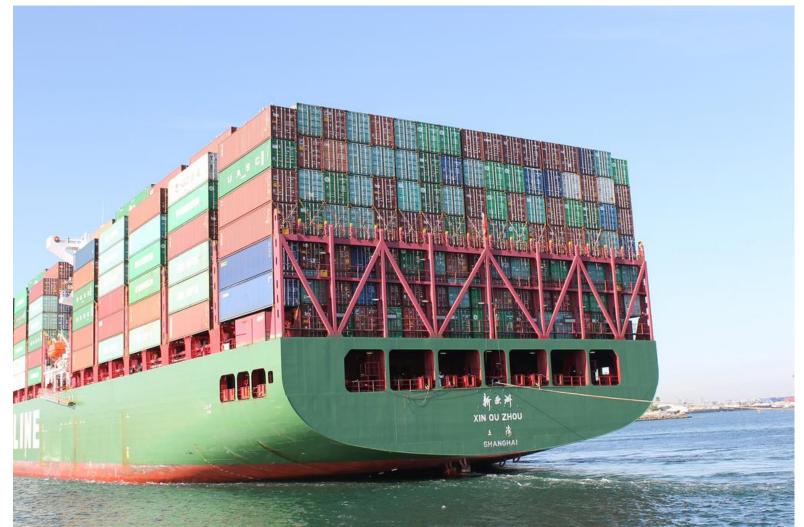
Containerized trade

- containerized cargo accounts for only 10% of the total volume, its value represents 52%.
- since 1990, the containerized trade has increased by more than 600% (Clarkson Research)
- Following the Subprime crisis, in 2009 container prices fell by 14% (UNCTAD, 2009).
- In last two years, freight rates have been very low, ship values have plummeted and competition on the various trade routes has intensified (Rec et al., 2016).
- UNCTAD highlighted the mismatch between supply and demand in the containerized trade.
- More alliances in order to deal with the empty containers and increase the economies of scale
- Recently, Hanjin Shipping declared bankruptcy
- In 2016, more than 20% of containerized seaborne trade was passing through the Chinese ports
- "the success of the port is strongly affected by the ability of the port community to fully exploit synergies with other transport nodes." (Notteboom, 2010)

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

ASEAN Member States

- ASEAN member states have become more integrated in the world economy also increased the trade between them – AEC;
- ASEAN integration lower shipping cost and improved quality of shipping improvement of trade performance and international competiveness (Tongzon and Lee, 2015); \
- The position of the ASEAN community in the maritime and global trade networks needs to be analyzed.


Research questions:

- What are the characteristics of the maritime port network and the trade network?
- What is the effect of the container throughput on the country's main centrality indicators?
- What are the main differences between the maritime and the trade networks in the Asian and ASEAN regions?

3. Methodology

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

Social Network Analysis (SNA)


SNA is the process of investigating social structures through the use of networks and graph theory (Otte and Rousseau, 2002).

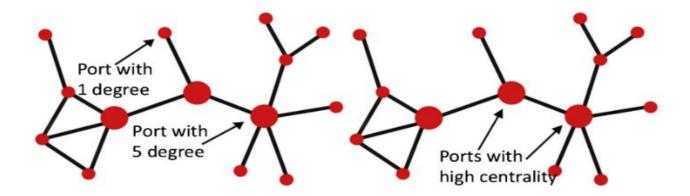
A network - collection of nodes, and links (or edges) between nodes.

Nodes – ports

Edges - flow of exports from one country to another country, or any maritime/ports indicators, as the average containerships size between the two ports. The importance of the flow depends on the link weight.

Network is directed - ship that moves from one port to another port.

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017



Social Network Analysis in the context of maritime trade

Jackson, (2010) classified centrality measures into four main groups:

- i) degree centrality assessing how a node is connected to others,
- ii) closeness centrality showing how easily a node can be reached by other nodes
- iii) betweenness centrality describing how important a node is in terms of connecting other nodes, and
- iv) eigenvector centrality measure (or the Bonacich centrality) referring to how important, central, influential, and tightly clustered a node's neighbors are.

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

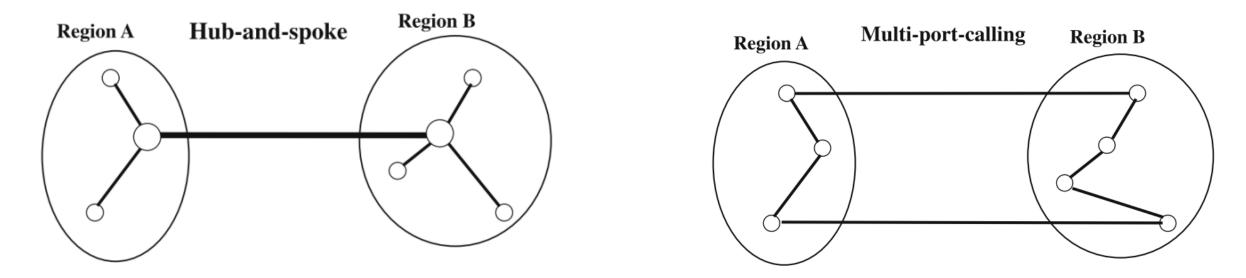


Figure 3: Hub and Spoke versus Multi-Port Calling configuration. Source: (Imai et al., 2009)

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

Maritime database, obtained from Lloyd's Marine Intelligence Unit (LMIU), year 2014

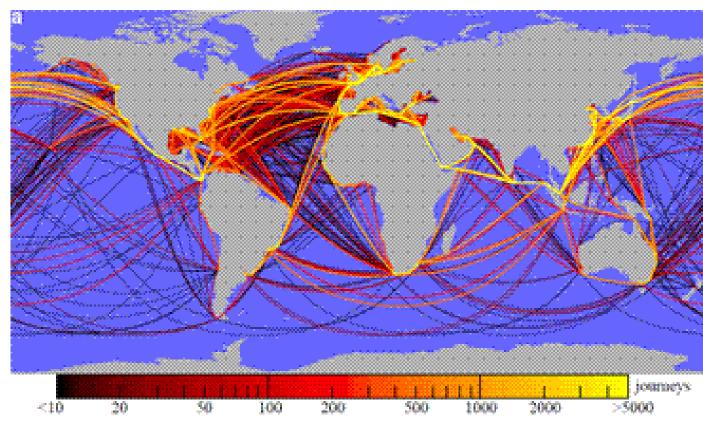
153 ports and 51 countries

79 ports are located in Asia, 27 in North America, 20 in Europe, 19 in Africa and 8 in the Latin America and the Caribbean.

- Container port of departure (A)
- Container port of arrival (B)
- Average size of the ships in dead weight tonnage (DWT) going from port A to port B
- Average size of the ships in Twenty-Foot Equivalent Unit (TEU) going from port A to port B
- Number of ships going from port A to port B
- Number of operators transporting goods from port A to port B
- Number of trips from port A to port B

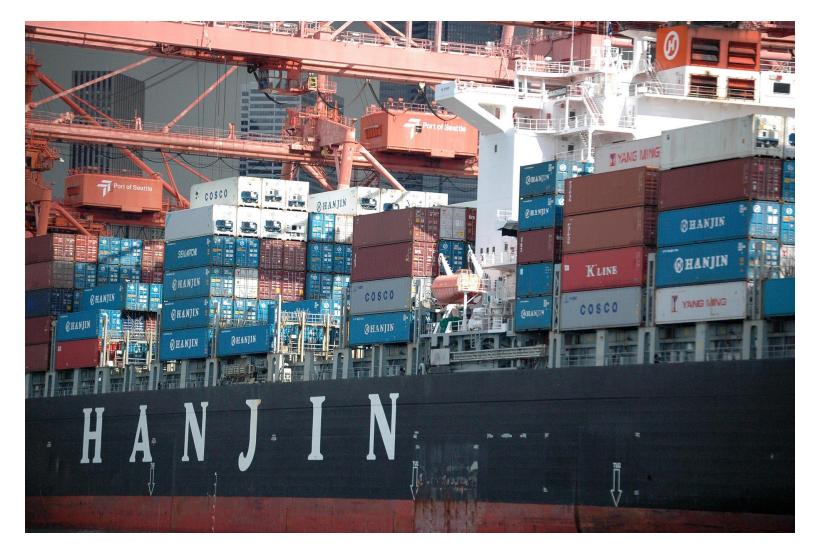
Export database (same countries) - UN ComTrade commodity databases in the Standard International Trade Classification (SITC) Revision 3.

https://comtrade.un.org/


Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

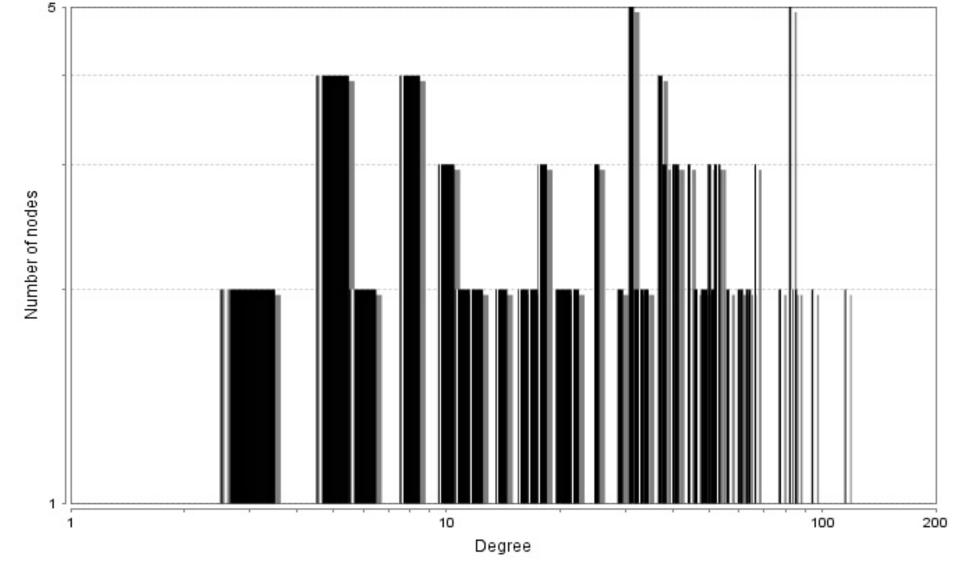
Types of networks in the current paper:

- 1) Maritime network which includes the ports in the sample
- 2) Trade network which takes into account all exported goods between the countries in the sample and gives the value of exports in thousands of dollars
- 3) Maritime network at a country leve



4.1. Container Port Network

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017


Container Ports' network – Descriptive statistics

Nodes attributes								
Attribute	Min.	1st Qu.	Median	Mean	3rd Qu	Max.		
Total TEU of arrived	0	581824	135108	263357	2969636	163033		
vessels at each port			8	6		30		
Total TEU of	0	474527	121944	319433	3653856	257704		
departed vessels at			3	2		55		
each port								
	Links attributes							
Attribute	Min.	1st Qu.	Median	Mean	3rd Qu	Max.		
Avg.TEU	80	1712	4082	4300	5867	18270		
Avg.Dwt	2351	24278	51542	54885	73905	194335		
No.of.Ships	1	2	9	25.2	27	1237		
No.of.Trips	1	2	21	99.7	90	5510		
Estimated TEU	80	8412	57890	391681	361053	143		
between ports						86449		
No.of.Operators	0	2	5	11.13	13	264		

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

Degree distribution of maritime network - Port level data

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

Network Statistics – Port level data

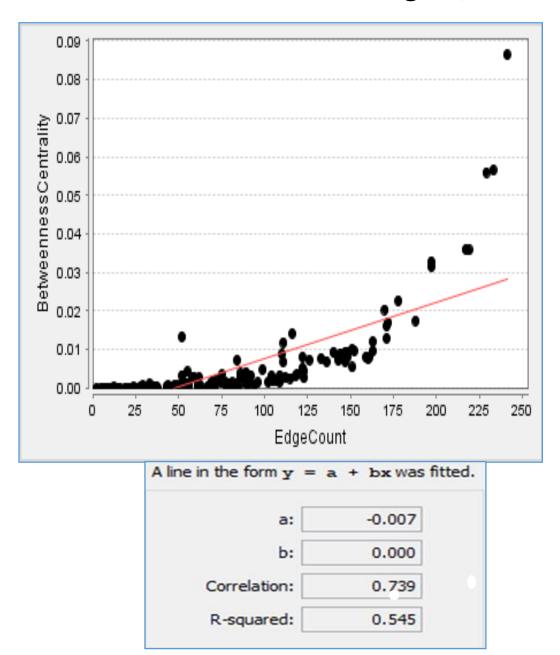
Clustering Coefficient	0.690409154
Connected Components	1
Diameter	4
Radius	2
Connected Pairs/Shortest Paths	23256
Average Short Path Length	1.808565531
Average Neighbors	47.81699346
Node Count	153
Number of edges (without self-loops)	6410
Density	0.2756

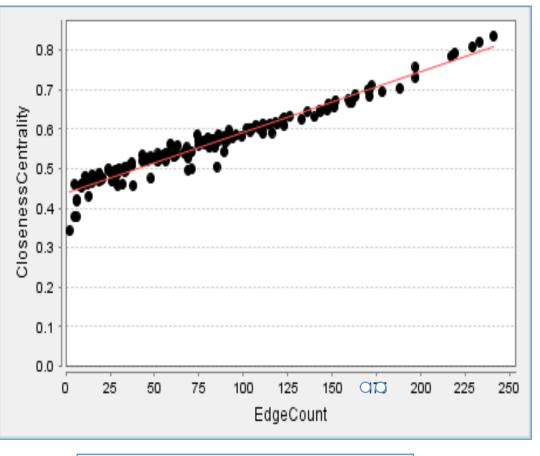
A scale-free configuration. characterized by a degree distribution that follows a power law with a few highly connected nodes and a majority of lowdegree nodes.

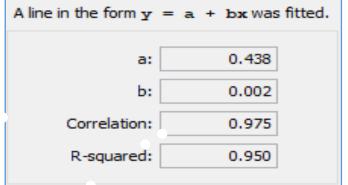
Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

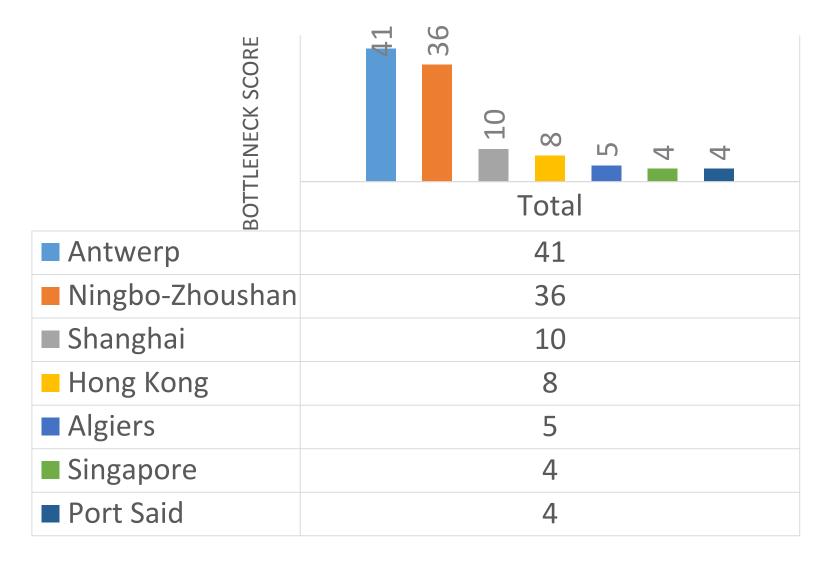
Port ranking by degree, closeness and betweenness centralities and container throughput in 2014 – Port level data

Top 10 in port networ file ranked by the Degree method			Top 10 in port network file ranked by the Closeness method		Top 10 in port network file ranked by the Betweenness method		Top 10 ports according to the Annual Container Throughput in 2014		
Rank	Port	Score	Port	Score	Container Port	Score	Port	Country	TEUs
1	Singapore	241	Singapore	138.50	Singapore	1873.04	Shanghai	China	35,300,000
2	Hong Kong	233	Shanghai	136.50	Shanghai	1257.84	Singapore	Singapore	33,900,000
3	Shanghai	229	Hong Kong	136	Hong Kong	1234.02	Shenzhen	China	24,037,000
4	Ningbo-Zhoushan	219	Shenzhen	133.50	Ningbo-Zhoushan	790.04	Hong Kong	Hong Kong	22,300,000
5	Shenzhen	217	Ningbo-Zhoushan	133.50	Shenzhen	769.07	Ningbo- Zhoushan	China	19,500,000
6	Port Klang	197	Port Klang	129	Port Klang	706.83	Busan	South Korea	18,700,000
7	Kaohsiung	197	Kaohsiung	127.50	Kaohsiung	665.08	Qingdao	China	16,660,000
8	Rotterdam	188	Rotterdam	126.67	Antwerp	479.87	Jebel Ali (Dubai)	United Arab Emirates	15,249,000
9	Antwerp	178	Port Said	126.50	Algeciras	477.63	Rotterdam	Netherlands	12,297,570
10	Tanjung Pelepas	172	Antwerp	124.33	Rotterdam	404.35	Port Klang	Malaysia	10,945,804


Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017



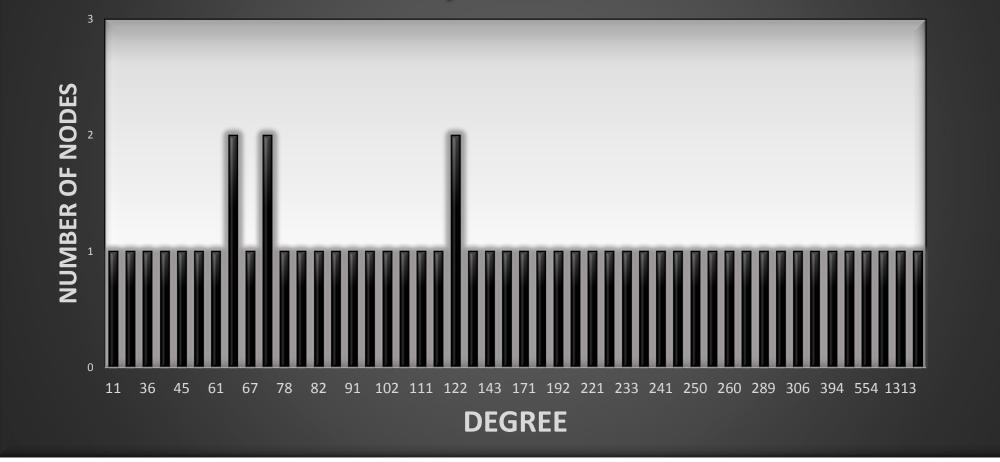



Correlation between degree, closeness and betweenness centralities – Port level data

Ranking of the ports with the highest scores for bottleneck

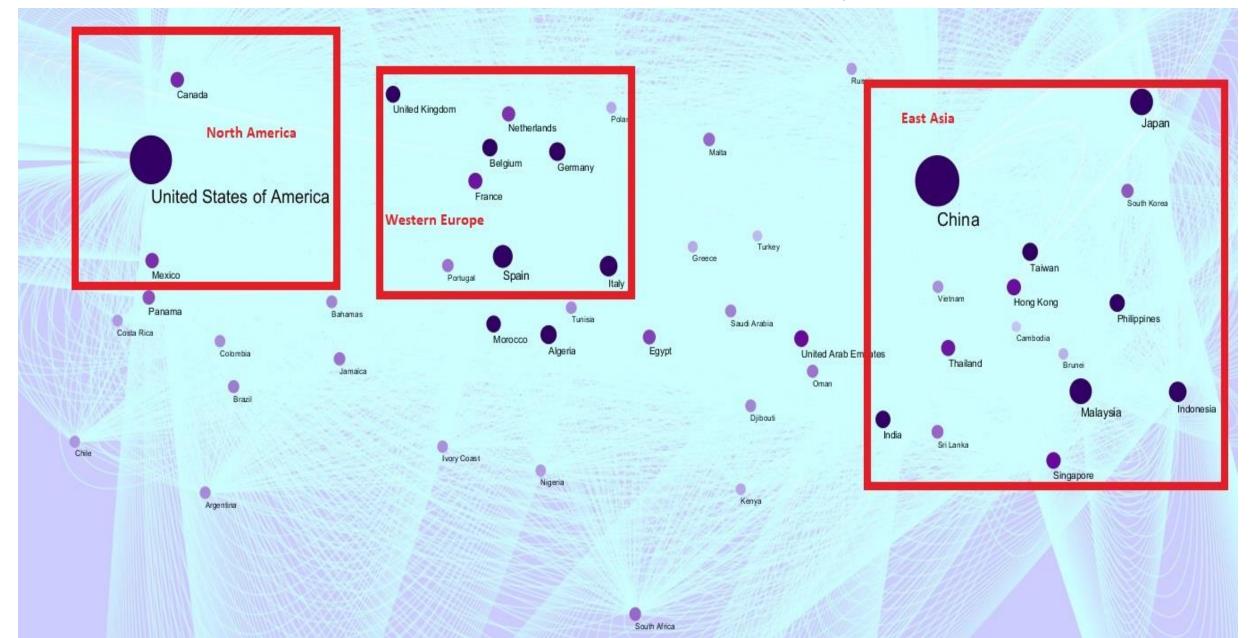
Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

4.2. Container Port Network at Country level



Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

Degree distribution Country-level Network


Degree distribution of maritime network – Country level data

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

Maritime network visualization – Country level data

Maritime network clusters – Country level data

Cluster	Score (Density*#Nodes)	Nodes	Edges	Node IDs
1	31.515	34	520	Brazil, Germany, Saudi Arabia, Malaysia, Argentina, Portugal, France, India, Egypt, China, Belgium, Djibouti, Algeria, United States of America, United Kingdom, United Arab Emirates, Taiwan, Sri Lanka , Spain, Singapore , South Korea , Panama, Oman, Netherlands, Morocco, Jamaica, Mexico, Malta, Bahamas, Thailand, Japan, Italy, Hong Kong , South Africa
2	3	7	9	Nigeria, Ivory Coast, Philippines, Indonesia, Russia, Costa Rica, Poland

The countries' trade interactions are no longer defined by the geographical position of the ports as mentioned by (<u>Ducruet et al., 2010</u>)

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

Maritime vs Trade Networks all countries

Maritime Network - Countr	y level	Trade Network - Country level		
Clustering Coefficient	0.7941876 4	Clustering Coefficient	0.978	
Connected Components	1	Connected Components	1	
Diameter	3	Diameter	2	
Radius	2	Radius	1	
Connected Pairs/Shortest Paths	2550	Connected Pairs/Shortest Paths	2550	
Average Short Path Length	1.4047058 8	Average Short Path Length	1.024	
Average Neighbors	32.431372 5	Average Neighbors	49.608	
Node Count	51	Node Count	51	
Number of edges (without self- loops)	5650	Number of edges (without self- loops)	2490	

Trade network: links were weighted according to the value of Exports in thousand USD. **Maritime network:** links were weighted according to the Number of trips between the ports.

How does container throughput affect ports main centrality measurements?

An estimation using the OLS method was performed in the following form:

Log (Degree) = $\beta_0 + \beta_1$ *Neighborhood_Connectivity + β_2 *Container Port Throughput + ε

Im(formula = log(Degree) ~ Neighborhood_Connectivity + CPT, data = DEGREE) Residuals: Min 1Q Median 3Q Max -1.9870 -0.1830 0.0232 0.2323 1.1741 Coefficients: Estimate Std. Error t value Pr(>|t|)1.214e+01 1.424e+00 8.523 1.05e-10 *** (Intercept) Neighborhood_Connectivity -2.027e-01 3.681e-02 -5.507 2.03e-06 *** CPT **2.864e-08** 1.402e-08 2.042 0.0475 * Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.4964 on 42 degrees of freedom Multiple R-squared: 0.5949, Adjusted R-squared: 0.5756 F-statistic: 30.84 on 2 and 42 DF, p-value: 5.745e-09

When a country has highly connected neighbors, it decreases its number of interactions. (hub and spoke structure)

High container throughput increases the connectivity of a country (degree centrality)

Asian and ASEAN Countries: maritime network

	MARITIN	IE NETWORK			
Network Stats -	ASIA	Network Stats - A	Network Stats - ASEAN		
Clustering Coefficient	0.847987049	Clustering Coefficient	0.896428571		
Connected	1	Connected	1		
Components		Components			
Diameter	3	Diameter	2		
Radius	2	Radius	1		
Connected	342	Connected	56		
Pairs/Shortest Paths		Pairs/Shortest Paths			
Average Short Path	1.257309942	Average Short Path	1.142857143		
Length		Length			
Average Neighbors	13.47368421	Average Neighbors	6		
Node Count	19	Node Count	8		
Network density	0.748538012	Network density	0.857142857		
Number of edges	1595	Number of edges	272		
(without self-loops)		(without self-loops)			

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

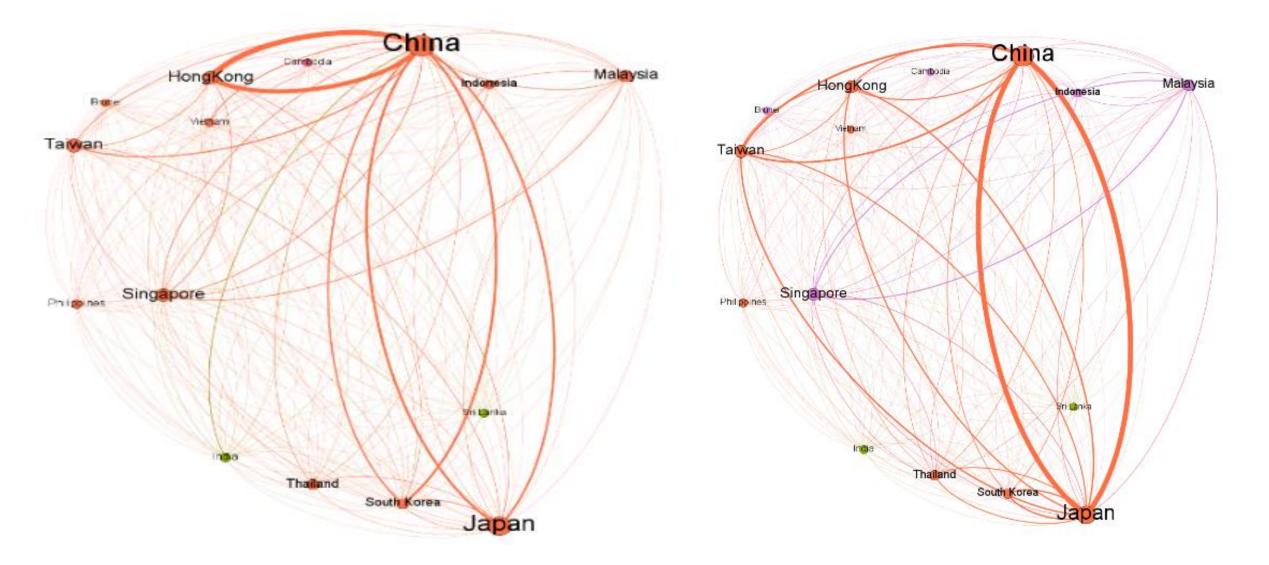
Co-funded by the Erasmus+ Programme of the European Union

Lemna

J

Asian and ASEAN countries: Trade network

	TRADE	NETWORK		
Network Stats - AS	SIA	Network Stats - ASEAN		
Clustering Coefficient	1	Clustering Coefficient	1	
Connected Components	1	Connected Components	1	
Diameter	1	Diameter	1	
Radius	1	Radius	1	
Connected Pairs/Shortest	342	Connected	56	
Paths		Pairs/Shortest Paths		
Average Short Path	1	Average Short Path	1	
Length		Length		
Average Neighbors	18	Average Neighbors	8	
Node Count	19	Node Count	8	
Network density	1	Network density	1	
Number of edges (without self-loops)	341	Number of edges (without self-loops)	56	


Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

ASEAN Communities in the Trade network (left) and the Maritime network (right)

5. Conclusion

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

Maritime network

The maritime network is characterized by a core-periphery structure associated with scale-free networks and is guided by shipping carriers cost minimization incentives

The trade network is a small-world structure reflects the ongoing globalization process and regional integration.

The linkages have been found to be stronger within the trade network than in the maritime network.

States with very well connected neighbours have less interactions (number of containerships operating between the two countries).

The ports with high level of container throughput also have a high degree centrality. This confirms that the maritime network is a hub and spoke – high level of resilience.

The identification of a cluster of 34 states from different continents show that trade interactions between the states are no longer defined by their geographical positions

In Asia - mutually connected countries is composed by Singapore, Malaysia, Indonesia, Cambodia and Brunei.

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

Thank you for your attention !!!

Environnemental Maritime Research Workshop Royal University of Agriculture, October 19, 2017

